An Integrated Page Ranking Algorithm for Personalized Web Search

نویسندگان

  • J. Jayanthi
  • K. S. Jayakumar
چکیده

Today search engines constitute the most powerful tools for organizing and extracting information from the Web. However, it is not uncommon that even the most renowned search engines return result sets including many pages that are definitely useless for the user. This is mainly due to the fact that the very basic relevance criterions underlying their information retrieval strategies rely on the presence of query keywords within the returned pages. Web Search Personalization is a process of customizing the Web search experience of individual users. The goal of such personalization may range from simply providing the user with a more satisfied results by relevant information. Such a system must be able to deduce the information needs of the user. It is worth observing that statistical algorithms are applied to ―tune‖ the result and, more importantly, approaches based on the concept of relevance feedback are used in order to maximize the satisfaction of user’s needs. Nevertheless, in some cases, this is not sufficient. In this paper search results are ranked based on user preferences in content and link. The preference of content and link is integrated in order to rank the results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cluster Based Personalized Search WAW 2009

We study personalized web ranking algorithms based on the existence of document clusterings. Motivated by the topic sensitive page ranking of Haveliwala [20], we develop and implement an efficient “local-cluster” algorithm by extending the web search algorithm of Achlioptas et al. [10]. We propose some formal criteria for evaluating such personalized ranking algorithms and provide some prelimin...

متن کامل

PROS: A Personalized Ranking Platform for Web Search

Current search engines rely on centralized page ranking algorithms which compute page rank values as single (global) values for each Web page. Recent work on topic-sensitive PageRank [6] and personalized PageRank [8] has explored how to extend PageRank values with personalization aspects. To achieve personalization, these algorithms need specific input: [8] for example needs a set of personaliz...

متن کامل

Criteria for Cluster-Based Personalized Search

We study personalized web ranking algorithms based on the existence of document clusterings. Motivated by the topic sensitive page ranking of Haveliwala [20], we develop and implement an efficient “local-cluster” algorithm by extending the web search algorithm of Achlioptas, Fiat, Karlin and McSherry [10]. We propose some formal criteria for evaluating such personalized ranking algorithms and p...

متن کامل

A New Hybrid Method for Web Pages Ranking in Search Engines

There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...

متن کامل

Cluster Based Personalized Search

We study personalized web ranking algorithms based on the existence of document clusterings. Motivated by the topic sensitive page ranking of Haveliwala [20], we develop and implement an efficient “local-cluster” algorithm by extending the web search algorithm of Achlioptas et al. [10]. We propose some formal criteria for evaluating such personalized ranking algorithms and provide some prelimin...

متن کامل

Analysis of an on-line algorithm for solving large Markov chains

Algorithms for ranking of web pages such as Google PageRank assign importance scores according to a stationary distribution of a Markov random walk on the web graph. Although in the classical search scheme the ranking scores are pre-computed off-line, several challenging problems in contemporary web search, such as personalized search and search in entity graphs, require on-line PageRank comput...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011